Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adaptive Bi-directional Attention: Exploring Multi-Granularity Representations for Machine Reading Comprehension (2012.10877v2)

Published 20 Dec 2020 in cs.CL and cs.AI

Abstract: Recently, the attention-enhanced multi-layer encoder, such as Transformer, has been extensively studied in Machine Reading Comprehension (MRC). To predict the answer, it is common practice to employ a predictor to draw information only from the final encoder layer which generates the \textit{coarse-grained} representations of the source sequences, i.e., passage and question. Previous studies have shown that the representation of source sequence becomes more \textit{coarse-grained} from \textit{fine-grained} as the encoding layer increases. It is generally believed that with the growing number of layers in deep neural networks, the encoding process will gather relevant information for each location increasingly, resulting in more \textit{coarse-grained} representations, which adds the likelihood of similarity to other locations (referring to homogeneity). Such a phenomenon will mislead the model to make wrong judgments so as to degrade the performance. To this end, we propose a novel approach called Adaptive Bidirectional Attention, which adaptively exploits the source representations of different levels to the predictor. Experimental results on the benchmark dataset, SQuAD 2.0 demonstrate the effectiveness of our approach, and the results are better than the previous state-of-the-art model by 2.5$\%$ EM and 2.3$\%$ F1 scores.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube