Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

An energy stable and maximum bound preserving scheme with variable time steps for time fractional Allen-Cahn equation (2012.10740v1)

Published 19 Dec 2020 in math.NA and cs.NA

Abstract: In this work, we propose a Crank-Nicolson-type scheme with variable steps for the time fractional Allen-Cahn equation. The proposed scheme is shown to be unconditionally stable (in a variational energy sense), and is maximum bound preserving. Interestingly, the discrete energy stability result obtained in this paper can recover the classical energy dissipation law when the fractional order $\alpha \rightarrow 1.$ That is, our scheme can asymptotically preserve the energy dissipation law in the $\alpha \rightarrow 1$ limit. This seems to be the first work on variable time-stepping scheme that can preserve both the energy stability and the maximum bound principle. Our Crank-Nicolson scheme is build upon a reformulated problem associated with the Riemann-Liouville derivative. As a by product, we build up a reversible transformation between the L1-type formula of the Riemann-Liouville derivative and a new L1-type formula of the Caputo derivative, with the help of a class of discrete orthogonal convolution kernels. This is the first time such a \textit{discrete} transformation is established between two discrete fractional derivatives. We finally present several numerical examples with an adaptive time-stepping strategy to show the effectiveness of the proposed scheme.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.