Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

T-GAP: Learning to Walk across Time for Temporal Knowledge Graph Completion (2012.10595v1)

Published 19 Dec 2020 in cs.LG, cs.AI, and cs.CL

Abstract: Temporal knowledge graphs (TKGs) inherently reflect the transient nature of real-world knowledge, as opposed to static knowledge graphs. Naturally, automatic TKG completion has drawn much research interests for a more realistic modeling of relational reasoning. However, most of the existing mod-els for TKG completion extend static KG embeddings that donot fully exploit TKG structure, thus lacking in 1) account-ing for temporally relevant events already residing in the lo-cal neighborhood of a query, and 2) path-based inference that facilitates multi-hop reasoning and better interpretability. In this paper, we propose T-GAP, a novel model for TKG completion that maximally utilizes both temporal information and graph structure in its encoder and decoder. T-GAP encodes query-specific substructure of TKG by focusing on the temporal displacement between each event and the query times-tamp, and performs path-based inference by propagating attention through the graph. Our empirical experiments demonstrate that T-GAP not only achieves superior performance against state-of-the-art baselines, but also competently generalizes to queries with unseen timestamps. Through extensive qualitative analyses, we also show that T-GAP enjoys from transparent interpretability, and follows human intuition in its reasoning process.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.