Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object Detection (2012.10412v3)

Published 18 Dec 2020 in cs.CV

Abstract: LiDAR-based 3D object detection is an important task for autonomous driving and current approaches suffer from sparse and partial point clouds of distant and occluded objects. In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions. On the one hand, we introduce a point cloud completion module to recover high-quality proposals of dense points and entire views with original structures preserved. On the other hand, a graph neural network module is designed, which comprehensively captures relations among points through a local-global attention mechanism as well as multi-scale graph based context aggregation, substantially strengthening encoded features. Extensive experiments on the KITTI benchmark show that the proposed approach outperforms the previous state-of-the-art baselines by remarkable margins, highlighting its effectiveness.

Citations (76)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.