Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Toward Streaming ASR with Non-Autoregressive Insertion-based Model (2012.10128v2)

Published 18 Dec 2020 in eess.AS

Abstract: Neural end-to-end (E2E) models have become a promising technique to realize practical automatic speech recognition (ASR) systems. When realizing such a system, one important issue is the segmentation of audio to deal with streaming input or long recording. After audio segmentation, the ASR model with a small real-time factor (RTF) is preferable because the latency of the system can be faster. Recently, E2E ASR based on non-autoregressive models becomes a promising approach since it can decode an $N$-length token sequence with less than $N$ iterations. We propose a system to concatenate audio segmentation and non-autoregressive ASR to realize high accuracy and low RTF ASR. As a non-autoregressive ASR, the insertion-based model is used. In addition, instead of concatenating separated models for segmentation and ASR, we introduce a new architecture that realizes audio segmentation and non-autoregressive ASR by a single neural network. Experimental results on Japanese and English dataset show that the method achieved a reasonable trade-off between accuracy and RTF compared with baseline autoregressive Transformer and connectionist temporal classification.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.