Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Enabling Retrain-free Deep Neural Network Pruning using Surrogate Lagrangian Relaxation (2012.10079v2)

Published 18 Dec 2020 in cs.LG and cs.CV

Abstract: Network pruning is a widely used technique to reduce computation cost and model size for deep neural networks. However, the typical three-stage pipeline, i.e., training, pruning and retraining (fine-tuning) significantly increases the overall training trails. In this paper, we develop a systematic weight-pruning optimization approach based on Surrogate Lagrangian relaxation (SLR), which is tailored to overcome difficulties caused by the discrete nature of the weight-pruning problem while ensuring fast convergence. We further accelerate the convergence of the SLR by using quadratic penalties. Model parameters obtained by SLR during the training phase are much closer to their optimal values as compared to those obtained by other state-of-the-art methods. We evaluate the proposed method on image classification tasks, i.e., ResNet-18 and ResNet-50 using ImageNet, and ResNet-18, ResNet-50 and VGG-16 using CIFAR-10, as well as object detection tasks, i.e., YOLOv3 and YOLOv3-tiny using COCO 2014 and Ultra-Fast-Lane-Detection using TuSimple lane detection dataset. Experimental results demonstrate that our SLR-based weight-pruning optimization approach achieves higher compression rate than state-of-the-arts under the same accuracy requirement. It also achieves a high model accuracy even at the hard-pruning stage without retraining (reduces the traditional three-stage pruning to two-stage). Given a limited budget of retraining epochs, our approach quickly recovers the model accuracy.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.