Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Self-supervised Learning with Fully Convolutional Networks (2012.10017v1)

Published 18 Dec 2020 in cs.CV

Abstract: Although deep learning based methods have achieved great success in many computer vision tasks, their performance relies on a large number of densely annotated samples that are typically difficult to obtain. In this paper, we focus on the problem of learning representation from unlabeled data for semantic segmentation. Inspired by two patch-based methods, we develop a novel self-supervised learning framework by formulating the Jigsaw Puzzle problem as a patch-wise classification process and solving it with a fully convolutional network. By learning to solve a Jigsaw Puzzle problem with 25 patches and transferring the learned features to semantic segmentation task on Cityscapes dataset, we achieve a 5.8 percentage point improvement over the baseline model that initialized from random values. Moreover, experiments show that our self-supervised learning method can be applied to different datasets and models. In particular, we achieved competitive performance with the state-of-the-art methods on the PASCAL VOC2012 dataset using significant fewer training images.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube