Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Use of Bayesian Nonparametric methods for Estimating the Measurements in High Clutter (2012.09785v1)

Published 30 Nov 2020 in cs.LG, eess.SP, and stat.ML

Abstract: Robust tracking of a target in a clutter environment is an important and challenging task. In recent years, the nearest neighbor methods and probabilistic data association filters were proposed. However, the performance of these methods diminishes as the number of measurements increases. In this paper, we propose a robust generative approach to effectively model multiple sensor measurements for tracking a moving target in an environment with high clutter. We assume a time-dependent number of measurements that include sensor observations with unknown origin, some of which may only contain clutter with no additional information. We robustly and accurately estimate the trajectory of the moving target in a high clutter environment with an unknown number of clutters by employing Bayesian nonparametric modeling. In particular, we employ a class of joint Bayesian nonparametric models to construct the joint prior distribution of target and clutter measurements such that the conditional distributions follow a Dirichlet process. The marginalized Dirichlet process prior of the target measurements is then used in a Bayesian tracker to estimate the dynamically-varying target state. We show through experiments that the tracking performance and effectiveness of our proposed framework are increased by suppressing high clutter measurements. In addition, we show that our proposed method outperforms existing methods such as nearest neighbor and probability data association filters.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube