2000 character limit reached
On the chromatic numbers of signed triangular and hexagonal grids (2012.09678v1)
Published 17 Dec 2020 in math.CO and cs.DM
Abstract: A signed graph is a simple graph with two types of edges. Switching a vertex $v$ of a signed graph corresponds to changing the type of each edge incident to $v$. A homomorphism from a signed graph $G$ to another signed graph $H$ is a mapping $\varphi: V(G) \rightarrow V(H)$ such that, after switching any number of the vertices of $G$, $\varphi$ maps every edge of $G$ to an edge of the same type in $H$. The chromatic number $\chi_s(G)$ of a signed graph $G$ is the order of a smallest signed graph $H$ such that there is a homomorphism from $G$ to $H$. We show that the chromatic number of signed triangular grids is at most 10 and the chromatic number of signed hexagonal grids is at most 4.
- Fabien Jacques (4 papers)