Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the chromatic numbers of signed triangular and hexagonal grids (2012.09678v1)

Published 17 Dec 2020 in math.CO and cs.DM

Abstract: A signed graph is a simple graph with two types of edges. Switching a vertex $v$ of a signed graph corresponds to changing the type of each edge incident to $v$. A homomorphism from a signed graph $G$ to another signed graph $H$ is a mapping $\varphi: V(G) \rightarrow V(H)$ such that, after switching any number of the vertices of $G$, $\varphi$ maps every edge of $G$ to an edge of the same type in $H$. The chromatic number $\chi_s(G)$ of a signed graph $G$ is the order of a smallest signed graph $H$ such that there is a homomorphism from $G$ to $H$. We show that the chromatic number of signed triangular grids is at most 10 and the chromatic number of signed hexagonal grids is at most 4.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Fabien Jacques (4 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.