Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

From Weakly Supervised Learning to Biquality Learning: an Introduction (2012.09632v3)

Published 16 Dec 2020 in cs.LG and cs.AI

Abstract: The field of Weakly Supervised Learning (WSL) has recently seen a surge of popularity, with numerous papers addressing different types of "supervision deficiencies". In WSL use cases, a variety of situations exists where the collected "information" is imperfect. The paradigm of WSL attempts to list and cover these problems with associated solutions. In this paper, we review the research progress on WSL with the aim to make it as a brief introduction to this field. We present the three axis of WSL cube and an overview of most of all the elements of their facets. We propose three measurable quantities that acts as coordinates in the previously defined cube namely: Quality, Adaptability and Quantity of information. Thus we suggest that Biquality Learning framework can be defined as a plan of the WSL cube and propose to re-discover previously unrelated patches in WSL literature as a unified Biquality Learning literature.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.