Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning active learning at the crossroads? evaluation and discussion (2012.09631v1)

Published 16 Dec 2020 in cs.LG

Abstract: Active learning aims to reduce annotation cost by predicting which samples are useful for a human expert to label. Although this field is quite old, several important challenges to using active learning in real-world settings still remain unsolved. In particular, most selection strategies are hand-designed, and it has become clear that there is no best active learning strategy that consistently outperforms all others in all applications. This has motivated research into meta-learning algorithms for "learning how to actively learn". In this paper, we compare this kind of approach with the association of a Random Forest with the margin sampling strategy, reported in recent comparative studies as a very competitive heuristic. To this end, we present the results of a benchmark performed on 20 datasets that compares a strategy learned using a recent meta-learning algorithm with margin sampling. We also present some lessons learned and open future perspectives.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.