Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Metrical Task Systems with Online Machine Learned Advice (2012.09394v2)

Published 17 Dec 2020 in cs.LG and cs.DS

Abstract: Machine learning algorithms are designed to make accurate predictions of the future based on existing data, while online algorithms seek to bound some performance measure (typically the competitive ratio) without knowledge of the future. Lykouris and Vassilvitskii demonstrated that augmenting online algorithms with a machine learned predictor can provably decrease the competitive ratio under as long as the predictor is suitably accurate. In this work we apply this idea to the Online Metrical Task System problem, which was put forth by Borodin, Linial, and Saks as a general model for dynamic systems processing tasks in an online fashion. We focus on the specific class of uniform task systems on $n$ tasks, for which the best deterministic algorithm is $O(n)$ competitive and the best randomized algorithm is $O(\log n)$ competitive. By giving an online algorithms access to a machine learned oracle with absolute predictive error bounded above by $\eta_0$, we construct a $\Theta(\min(\sqrt{\eta_0}, \log n))$ competitive algorithm for the uniform case of the metrical task systems problem. We also give a $\Theta(\log \eta_0)$ lower bound on the competitive ratio of any randomized algorithm.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube