Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Roof-GAN: Learning to Generate Roof Geometry and Relations for Residential Houses (2012.09340v2)

Published 17 Dec 2020 in cs.CV

Abstract: This paper presents Roof-GAN, a novel generative adversarial network that generates structured geometry of residential roof structures as a set of roof primitives and their relationships. Given the number of primitives, the generator produces a structured roof model as a graph, which consists of 1) primitive geometry as raster images at each node, encoding facet segmentation and angles; 2) inter-primitive colinear/coplanar relationships at each edge; and 3) primitive geometry in a vector format at each node, generated by a novel differentiable vectorizer while enforcing the relationships. The discriminator is trained to assess the primitive raster geometry, the primitive relationships, and the primitive vector geometry in a fully end-to-end architecture. Qualitative and quantitative evaluations demonstrate the effectiveness of our approach in generating diverse and realistic roof models over the competing methods with a novel metric proposed in this paper for the task of structured geometry generation. Code and data are available at https://github.com/yi-ming-qian/roofgan .

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.