Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

Measuring Disentanglement: A Review of Metrics (2012.09276v3)

Published 16 Dec 2020 in cs.LG and cs.AI

Abstract: Learning to disentangle and represent factors of variation in data is an important problem in AI. While many advances have been made to learn these representations, it is still unclear how to quantify disentanglement. While several metrics exist, little is known on their implicit assumptions, what they truly measure, and their limits. In consequence, it is difficult to interpret results when comparing different representations. In this work, we survey supervised disentanglement metrics and thoroughly analyze them. We propose a new taxonomy in which all metrics fall into one of three families: intervention-based, predictor-based and information-based. We conduct extensive experiments in which we isolate properties of disentangled representations, allowing stratified comparison along several axes. From our experiment results and analysis, we provide insights on relations between disentangled representation properties. Finally, we share guidelines on how to measure disentanglement.

Citations (76)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com