Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Beyond the Hype: A Real-World Evaluation of the Impact and Cost of Machine Learning-Based Malware Detection (2012.09214v4)

Published 16 Dec 2020 in cs.CR and cs.LG

Abstract: In this paper, we present a scientific evaluation of four prominent malware detection tools to assist an organization with two primary questions: To what extent do ML-based tools accurately classify previously- and never-before-seen files? Is it worth purchasing a network-level malware detector? To identify weaknesses, we tested each tool against 3,536 total files (2,554 or 72\% malicious, 982 or 28\% benign) of a variety of file types, including hundreds of malicious zero-days, polyglots, and APT-style files, delivered on multiple protocols. We present statistical results on detection time and accuracy, consider complementary analysis (using multiple tools together), and provide two novel applications of the recent cost-benefit evaluation procedure of Iannacone & Bridges. While the ML-based tools are more effective at detecting zero-day files and executables, the signature-based tool may still be an overall better option. Both network-based tools provide substantial (simulated) savings when paired with either host tool, yet both show poor detection rates on protocols other than HTTP or SMTP. Our results show that all four tools have near-perfect precision but alarmingly low recall, especially on file types other than executables and office files -- 37% of malware tested, including all polyglot files, were undetected. Priorities for researchers and takeaways for end users are given.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com