Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

LIREx: Augmenting Language Inference with Relevant Explanation (2012.09157v1)

Published 16 Dec 2020 in cs.CL and cs.AI

Abstract: Natural language explanations (NLEs) are a special form of data annotation in which annotators identify rationales (most significant text tokens) when assigning labels to data instances, and write out explanations for the labels in natural language based on the rationales. NLEs have been shown to capture human reasoning better, but not as beneficial for natural language inference (NLI). In this paper, we analyze two primary flaws in the way NLEs are currently used to train explanation generators for language inference tasks. We find that the explanation generators do not take into account the variability inherent in human explanation of labels, and that the current explanation generation models generate spurious explanations. To overcome these limitations, we propose a novel framework, LIREx, that incorporates both a rationale-enabled explanation generator and an instance selector to select only relevant, plausible NLEs to augment NLI models. When evaluated on the standardized SNLI data set, LIREx achieved an accuracy of 91.87%, an improvement of 0.32 over the baseline and matching the best-reported performance on the data set. It also achieves significantly better performance than previous studies when transferred to the out-of-domain MultiNLI data set. Qualitative analysis shows that LIREx generates flexible, faithful, and relevant NLEs that allow the model to be more robust to spurious explanations. The code is available at https://github.com/zhaoxy92/LIREx.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com