Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Avoiding the Union Bound When Answering Multiple Differentially Private Queries (2012.09116v1)

Published 16 Dec 2020 in cs.DS, cs.CR, and cs.LG

Abstract: In this work, we study the problem of answering $k$ queries with $(\epsilon, \delta)$-differential privacy, where each query has sensitivity one. We give an algorithm for this task that achieves an expected $\ell_\infty$ error bound of $O(\frac{1}{\epsilon}\sqrt{k \log \frac{1}{\delta}})$, which is known to be tight (Steinke and ULLMan, 2016). A very recent work by Dagan and Kur (2020) provides a similar result, albeit via a completely different approach. One difference between our work and theirs is that our guarantee holds even when $\delta < 2{-\Omega(k/(\log k)8)}$ whereas theirs does not apply in this case. On the other hand, the algorithm of Dagan and Kur has a remarkable advantage that the $\ell_{\infty}$ error bound of $O(\frac{1}{\epsilon}\sqrt{k \log \frac{1}{\delta}})$ holds not only in expectation but always (i.e., with probability one) while we can only get a high probability (or expected) guarantee on the error.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.