Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust self-triggered DMPC for linear discrete-time systems with local and global constraints (2012.08872v1)

Published 16 Dec 2020 in eess.SY, cs.SY, and math.OC

Abstract: This paper proposes a robust self-triggered distributed model predictive control (DMPC) scheme for a family of Discrete-Time linear systems with local (uncoupled) and global (coupled) constraints. To handle the additive disturbance, tube-based method is proposed for the satisfaction of local state and control constraints. Meanwhile, A special form of constraints tightening is given to guarantee the global coupled constraints. The self-triggering mechanism help reduce the computation burden by skip insignificant iteration steps, which determine a certain sampling instants to solve the DMPC optimization problem in parallel ways. The DMPC optimization problem is constructed as a dual form, and solved distributedly based on the Alternative Direction Multiplier Method (ADMM) with some known simplifications. Recursive feasibility and input-to-state stability of the closed-loop system are shown, the performance of proposed scheme is demonstrated by a simulation example.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube