Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Toolbox for Discovering Dynamic System Relations via TAG Guided Genetic Programming (2012.08834v1)

Published 16 Dec 2020 in eess.SY and cs.SY

Abstract: Data-driven modeling of nonlinear dynamical systems often require an expert user to take critical decisions a priori to the identification procedure. Recently an automated strategy for data driven modeling of \textit{single-input single-output} (SISO) nonlinear dynamical systems based on \textit{Genetic Programming} (GP) and \textit{Tree Adjoining Grammars} (TAG) has been introduced. The current paper extends these latest findings by proposing a \textit{multi-input multi-output} (MIMO) TAG modeling framework for polynomial NARMAX models. Moreover we introduce a TAG identification toolbox in Matlab that provides implementation of the proposed methodology to solve multi-input multi-output identification problems under NARMAX noise assumption. The capabilities of the toolbox and the modelling methodology are demonstrated in the identification of two SISO and one MIMO nonlinear dynamical benchmark models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.