Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Query expansion with artificially generated texts (2012.08787v1)

Published 16 Dec 2020 in cs.IR

Abstract: A well-known way to improve the performance of document retrieval is to expand the user's query. Several approaches have been proposed in the literature, and some of them are considered as yielding state-of-the-art results in IR. In this paper, we explore the use of text generation to automatically expand the queries. We rely on a well-known neural generative model, GPT-2, that comes with pre-trained models for English but can also be fine-tuned on specific corpora. Through different experiments, we show that text generation is a very effective way to improve the performance of an IR system, with a large margin (+10% MAP gains), and that it outperforms strong baselines also relying on query expansion (LM+RM3). This conceptually simple approach can easily be implemented on any IR system thanks to the availability of GPT code and models.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)