Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Wasserstein Barycenters via Displacement Interpolation (2012.08610v3)

Published 15 Dec 2020 in eess.SY, cs.MA, and cs.SY

Abstract: Consider a multi-agent system whereby each agent has an initial probability measure. In this paper, we propose a distributed algorithm based upon stochastic, asynchronous and pairwise exchange of information and displacement interpolation in the Wasserstein space. We characterize the evolution of this algorithm and prove it computes the Wasserstein barycenter of the initial measures under various conditions. One version of the algorithm computes a standard Wasserstein barycenter, i.e., a barycenter based upon equal weights; and the other version computes a randomized Wasserstein barycenter, i.e., a barycenter based upon random weights for the initial measures. Finally, we specialize our algorithm to Gaussian distributions and draw a connection with the modeling of opinion dynamics in mathematical sociology.

Citations (3)

Summary

We haven't generated a summary for this paper yet.