GTA: Global Temporal Attention for Video Action Understanding (2012.08510v3)
Abstract: Self-attention learns pairwise interactions to model long-range dependencies, yielding great improvements for video action recognition. In this paper, we seek a deeper understanding of self-attention for temporal modeling in videos. We first demonstrate that the entangled modeling of spatio-temporal information by flattening all pixels is sub-optimal, failing to capture temporal relationships among frames explicitly. To this end, we introduce Global Temporal Attention (GTA), which performs global temporal attention on top of spatial attention in a decoupled manner. We apply GTA on both pixels and semantically similar regions to capture temporal relationships at different levels of spatial granularity. Unlike conventional self-attention that computes an instance-specific attention matrix, GTA directly learns a global attention matrix that is intended to encode temporal structures that generalize across different samples. We further augment GTA with a cross-channel multi-head fashion to exploit channel interactions for better temporal modeling. Extensive experiments on 2D and 3D networks demonstrate that our approach consistently enhances temporal modeling and provides state-of-the-art performance on three video action recognition datasets.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.