Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CosSGD: Communication-Efficient Federated Learning with a Simple Cosine-Based Quantization (2012.08241v2)

Published 15 Dec 2020 in cs.LG and cs.CV

Abstract: Federated learning is a promising framework to mitigate data privacy and computation concerns. However, the communication cost between the server and clients has become the major bottleneck for successful deployment. Despite notable progress in gradient compression, the existing quantization methods require further improvement when low-bits compression is applied, especially the overall systems often degenerate a lot when quantization are applied in double directions to compress model weights and gradients. In this work, we propose a simple cosine-based nonlinear quantization and achieve impressive results in compressing round-trip communication costs. We are not only able to compress model weights and gradients at higher ratios than previous methods, but also achieve competing model performance at the same time. Further, our approach is highly suitable for federated learning problems since it has low computational complexity and requires only a little additional data to recover the compressed information. Extensive experiments have been conducted on image classification and brain tumor semantic segmentation using the CIFAR-10, and BraTS datasets where we show state-of-the-art effectiveness and impressive communication efficiency.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube