Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards open and expandable cognitive AI architectures for large-scale multi-agent human-robot collaborative learning (2012.08174v2)

Published 15 Dec 2020 in cs.RO, cs.AI, cs.HC, and cs.LG

Abstract: Learning from Demonstration (LfD) constitutes one of the most robust methodologies for constructing efficient cognitive robotic systems. Despite the large body of research works already reported, current key technological challenges include those of multi-agent learning and long-term autonomy. Towards this direction, a novel cognitive architecture for multi-agent LfD robotic learning is introduced, targeting to enable the reliable deployment of open, scalable and expandable robotic systems in large-scale and complex environments. In particular, the designed architecture capitalizes on the recent advances in the AI field, by establishing a Federated Learning (FL)-based framework for incarnating a multi-human multi-robot collaborative learning environment. The fundamental conceptualization relies on employing multiple AI-empowered cognitive processes (implementing various robotic tasks) that operate at the edge nodes of a network of robotic platforms, while global AI models (underpinning the aforementioned robotic tasks) are collectively created and shared among the network, by elegantly combining information from a large number of human-robot interaction instances. Regarding pivotal novelties, the designed cognitive architecture a) introduces a new FL-based formalism that extends the conventional LfD learning paradigm to support large-scale multi-agent operational settings, b) elaborates previous FL-based self-learning robotic schemes so as to incorporate the human in the learning loop and c) consolidates the fundamental principles of FL with additional sophisticated AI-enabled learning methodologies for modelling the multi-level inter-dependencies among the robotic tasks. The applicability of the proposed framework is explained using an example of a real-world industrial case study for agile production-based Critical Raw Materials (CRM) recovery.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.