Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient Trajectory Planning for Multiple Non-holonomic Mobile Robots via Prioritized Trajectory Optimization (2012.08135v1)

Published 15 Dec 2020 in cs.RO

Abstract: In this paper, we present a novel approach to efficiently generate collision-free optimal trajectories for multiple non-holonomic mobile robots in obstacle-rich environments. Our approach first employs a graph-based multi-agent path planner to find an initial discrete solution, and then refines this solution into smooth trajectories using nonlinear optimization. We divide the robot team into small groups and propose a prioritized trajectory optimization method to improve the scalability of the algorithm. Infeasible sub-problems may arise in some scenarios because of the decoupled optimization framework. To handle this problem, a novel grouping and priority assignment strategy is developed to increase the probability of finding feasible trajectories. Compared to the coupled trajectory optimization, the proposed approach reduces the computation time considerably with a small impact on the optimality of the plans. Simulations and hardware experiments verified the effectiveness and superiority of the proposed approach.

Citations (64)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.