Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Binary Black-box Evasion Attacks Against Deep Learning-based Static Malware Detectors with Adversarial Byte-Level Language Model (2012.07994v1)

Published 14 Dec 2020 in cs.CR and cs.LG

Abstract: Anti-malware engines are the first line of defense against malicious software. While widely used, feature engineering-based anti-malware engines are vulnerable to unseen (zero-day) attacks. Recently, deep learning-based static anti-malware detectors have achieved success in identifying unseen attacks without requiring feature engineering and dynamic analysis. However, these detectors are susceptible to malware variants with slight perturbations, known as adversarial examples. Generating effective adversarial examples is useful to reveal the vulnerabilities of such systems. Current methods for launching such attacks require accessing either the specifications of the targeted anti-malware model, the confidence score of the anti-malware response, or dynamic malware analysis, which are either unrealistic or expensive. We propose MalRNN, a novel deep learning-based approach to automatically generate evasive malware variants without any of these restrictions. Our approach features an adversarial example generation process, which learns a LLM via a generative sequence-to-sequence recurrent neural network to augment malware binaries. MalRNN effectively evades three recent deep learning-based malware detectors and outperforms current benchmark methods. Findings from applying our MalRNN on a real dataset with eight malware categories are discussed.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.