Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Odd-One-Out Representation Learning (2012.07966v1)

Published 14 Dec 2020 in cs.LG

Abstract: The effective application of representation learning to real-world problems requires both techniques for learning useful representations, and also robust ways to evaluate properties of representations. Recent work in disentangled representation learning has shown that unsupervised representation learning approaches rely on fully supervised disentanglement metrics, which assume access to labels for ground-truth factors of variation. In many real-world cases ground-truth factors are expensive to collect, or difficult to model, such as for perception. Here we empirically show that a weakly-supervised downstream task based on odd-one-out observations is suitable for model selection by observing high correlation on a difficult downstream abstract visual reasoning task. We also show that a bespoke metric-learning VAE model which performs highly on this task also out-performs other standard unsupervised and a weakly-supervised disentanglement model across several metrics.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.