Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mercer Features for Efficient Combinatorial Bayesian Optimization (2012.07762v1)

Published 14 Dec 2020 in cs.LG and cs.AI

Abstract: Bayesian optimization (BO) is an efficient framework for solving black-box optimization problems with expensive function evaluations. This paper addresses the BO problem setting for combinatorial spaces (e.g., sequences and graphs) that occurs naturally in science and engineering applications. A prototypical example is molecular optimization guided by expensive experiments. The key challenge is to balance the complexity of statistical models and tractability of search to select combinatorial structures for evaluation. In this paper, we propose an efficient approach referred as Mercer Features for Combinatorial Bayesian Optimization (MerCBO). The key idea behind MerCBO is to provide explicit feature maps for diffusion kernels over discrete objects by exploiting the structure of their combinatorial graph representation. These Mercer features combined with Thompson sampling as the acquisition function allows us to employ tractable solvers to find next structures for evaluation. Experiments on diverse real-world benchmarks demonstrate that MerCBO performs similarly or better than prior methods. The source code is available at https://github.com/aryandeshwal/MerCBO .

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube