Papers
Topics
Authors
Recent
2000 character limit reached

Building Deep Learning Models to Predict Mortality in ICU Patients (2012.07585v1)

Published 11 Dec 2020 in cs.LG

Abstract: Mortality prediction in intensive care units is considered one of the critical steps for efficiently treating patients in serious condition. As a result, various prediction models have been developed to address this problem based on modern electronic healthcare records. However, it becomes increasingly challenging to model such tasks as time series variables because some laboratory test results such as heart rate and blood pressure are sampled with inconsistent time frequencies. In this paper, we propose several deep learning models using the same features as the SAPS II score. To derive insight into the proposed model performance. Several experiments have been conducted based on the well known clinical dataset Medical Information Mart for Intensive Care III. The prediction results demonstrate the proposed model's capability in terms of precision, recall, F1 score, and area under the receiver operating characteristic curve.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.