Papers
Topics
Authors
Recent
2000 character limit reached

Towards unsupervised phone and word segmentation using self-supervised vector-quantized neural networks (2012.07551v2)

Published 14 Dec 2020 in cs.CL and eess.AS

Abstract: We investigate segmenting and clustering speech into low-bitrate phone-like sequences without supervision. We specifically constrain pretrained self-supervised vector-quantized (VQ) neural networks so that blocks of contiguous feature vectors are assigned to the same code, thereby giving a variable-rate segmentation of the speech into discrete units. Two segmentation methods are considered. In the first, features are greedily merged until a prespecified number of segments are reached. The second uses dynamic programming to optimize a squared error with a penalty term to encourage fewer but longer segments. We show that these VQ segmentation methods can be used without alteration across a wide range of tasks: unsupervised phone segmentation, ABX phone discrimination, same-different word discrimination, and as inputs to a symbolic word segmentation algorithm. The penalized dynamic programming method generally performs best. While performance on individual tasks is only comparable to the state-of-the-art in some cases, in all tasks a reasonable competing approach is outperformed at a substantially lower bitrate.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com