Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Effect of Word Embedding Models on Hate and Offensive Speech Detection (2012.07534v1)

Published 23 Nov 2020 in cs.CL and cs.LG

Abstract: Deep neural networks have been adopted successfully in hate speech detection problems. Nevertheless, the effect of the word embedding models on the neural network's performance has not been appropriately examined in the literature. In our study, through different detection tasks, 2-class, 3-class, and 6-class classification, we investigate the impact of both word embedding models and neural network architectures on the predictive accuracy. Our focus is on the Arabic language. We first train several word embedding models on a large-scale unlabelled Arabic text corpus. Next, based on a dataset of Arabic hate and offensive speech, for each detection task, we train several neural network classifiers using the pre-trained word embedding models. This task yields a large number of various learned models, which allows conducting an exhaustive comparison. The empirical analysis demonstrates, on the one hand, the superiority of the skip-gram models and, on the other hand, the superiority of the CNN network across the three detection tasks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.