Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation (2012.07064v1)

Published 13 Dec 2020 in cs.IR

Abstract: Cold-start problem is a fundamental challenge for recommendation tasks. Despite the recent advances on Graph Neural Networks (GNNs) incorporate the high-order collaborative signal to alleviate the problem, the embeddings of the cold-start users and items aren't explicitly optimized, and the cold-start neighbors are not dealt with during the graph convolution in GNNs. This paper proposes to pre-train a GNN model before applying it for recommendation. Unlike the goal of recommendation, the pre-training GNN simulates the cold-start scenarios from the users/items with sufficient interactions and takes the embedding reconstruction as the pretext task, such that it can directly improve the embedding quality and can be easily adapted to the new cold-start users/items. To further reduce the impact from the cold-start neighbors, we incorporate a self-attention-based meta aggregator to enhance the aggregation ability of each graph convolution step, and an adaptive neighbor sampler to select the effective neighbors according to the feedbacks from the pre-training GNN model. Experiments on three public recommendation datasets show the superiority of our pre-training GNN model against the original GNN models on user/item embedding inference and the recommendation task.

Citations (97)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.