Papers
Topics
Authors
Recent
2000 character limit reached

PoNA: Pose-guided Non-local Attention for Human Pose Transfer (2012.07049v1)

Published 13 Dec 2020 in cs.CV

Abstract: Human pose transfer, which aims at transferring the appearance of a given person to a target pose, is very challenging and important in many applications. Previous work ignores the guidance of pose features or only uses local attention mechanism, leading to implausible and blurry results. We propose a new human pose transfer method using a generative adversarial network (GAN) with simplified cascaded blocks. In each block, we propose a pose-guided non-local attention (PoNA) mechanism with a long-range dependency scheme to select more important regions of image features to transfer. We also design pre-posed image-guided pose feature update and post-posed pose-guided image feature update to better utilize the pose and image features. Our network is simple, stable, and easy to train. Quantitative and qualitative results on Market-1501 and DeepFashion datasets show the efficacy and efficiency of our model. Compared with state-of-the-art methods, our model generates sharper and more realistic images with rich details, while having fewer parameters and faster speed. Furthermore, our generated images can help to alleviate data insufficiency for person re-identification.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.