Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Iterative Utterance Segmentation for Neural Semantic Parsing (2012.07019v1)

Published 13 Dec 2020 in cs.CL

Abstract: Neural semantic parsers usually fail to parse long and complex utterances into correct meaning representations, due to the lack of exploiting the principle of compositionality. To address this issue, we present a novel framework for boosting neural semantic parsers via iterative utterance segmentation. Given an input utterance, our framework iterates between two neural modules: a segmenter for segmenting a span from the utterance, and a parser for mapping the span into a partial meaning representation. Then, these intermediate parsing results are composed into the final meaning representation. One key advantage is that this framework does not require any handcraft templates or additional labeled data for utterance segmentation: we achieve this through proposing a novel training method, in which the parser provides pseudo supervision for the segmenter. Experiments on Geo, ComplexWebQuestions, and Formulas show that our framework can consistently improve performances of neural semantic parsers in different domains. On data splits that require compositional generalization, our framework brings significant accuracy gains: Geo 63.1 to 81.2, Formulas 59.7 to 72.7, ComplexWebQuestions 27.1 to 56.3.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube