Papers
Topics
Authors
Recent
2000 character limit reached

Context-Enhanced Entity and Relation Embedding for Knowledge Graph Completion (2012.07011v1)

Published 13 Dec 2020 in cs.CL and cs.AI

Abstract: Most researches for knowledge graph completion learn representations of entities and relations to predict missing links in incomplete knowledge graphs. However, these methods fail to take full advantage of both the contextual information of entity and relation. Here, we extract contexts of entities and relations from the triplets which they compose. We propose a model named AggrE, which conducts efficient aggregations respectively on entity context and relation context in multi-hops, and learns context-enhanced entity and relation embeddings for knowledge graph completion. The experiment results show that AggrE is competitive to existing models.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.