Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Federated Mimic Learning for Privacy Preserving Intrusion Detection (2012.06974v1)

Published 13 Dec 2020 in cs.NI

Abstract: Internet of things (IoT) devices are prone to attacks due to the limitation of their privacy and security components. These attacks vary from exploiting backdoors to disrupting the communication network of the devices. Intrusion Detection Systems (IDS) play an essential role in ensuring information privacy and security of IoT devices against these attacks. Recently, deep learning-based IDS techniques are becoming more prominent due to their high classification accuracy. However, conventional deep learning techniques jeopardize user privacy due to the transfer of user data to a centralized server. Federated learning (FL) is a popular privacy-preserving decentralized learning method. FL enables training models locally at the edge devices and transferring local models to a centralized server instead of transferring sensitive data. Nevertheless, FL can suffer from reverse engineering ML attacks that can learn information about the user's data from model. To overcome the problem of reverse engineering, mimic learning is another way to preserve the privacy of ML-based IDS. In mimic learning, a student model is trained with the public dataset, which is labeled with the teacher model that is trained by sensitive user data. In this work, we propose a novel approach that combines the advantages of FL and mimic learning, namely federated mimic learning to create a distributed IDS while minimizing the risk of jeopardizing users' privacy, and benchmark its performance compared to other ML-based IDS techniques using NSL-KDD dataset. Our results show that we can achieve 98.11% detection accuracy with federated mimic learning.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.