Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

LiveChess2FEN: a Framework for Classifying Chess Pieces based on CNNs (2012.06858v1)

Published 12 Dec 2020 in cs.CV and cs.LG

Abstract: Automatic digitization of chess games using computer vision is a significant technological challenge. This problem is of much interest for tournament organizers and amateur or professional players to broadcast their over-the-board (OTB) games online or analyze them using chess engines. Previous work has shown promising results, but the recognition accuracy and the latency of state-of-the-art techniques still need further enhancements to allow their practical and affordable deployment. We have investigated how to implement them on an Nvidia Jetson Nano single-board computer effectively. Our first contribution has been accelerating the chessboard's detection algorithm. Subsequently, we have analyzed different Convolutional Neural Networks for chess piece classification and how to map them efficiently on our embedded platform. Notably, we have implemented a functional framework that automatically digitizes a chess position from an image in less than 1 second, with 92% accuracy when classifying the pieces and 95% when detecting the board.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.