Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Analysis on Subgraph Isomorphism (2012.06802v2)

Published 12 Dec 2020 in cs.DB

Abstract: Subgraph isomorphism is a well-known NP-hard problem which is widely used in many applications, such as social network analysis and knowledge graph query. Its performance is often limited by the inherent hardness. Several insightful works have been done since 2012, mainly optimizing pruning rules and matching orders to accelerate enumerating all isomorphic subgraphs. Nevertheless, their correctness and performance are not well studied. First, different languages are used in implementation with different compilation flags. Second, experiments are not done on the same platform and the same datasets. Third, some ideas of different works are even complementary. Last but not least, there exist errors when applying some algorithms. In this paper, we address these problems by re-implementing seven representative subgraph isomorphism algorithms as well as their improved versions, and conducting comprehensive experiments on various graphs. The results show pros and cons of state-of-the-art solutions and explore new approaches to optimization.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.