Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

GDPNet: Refining Latent Multi-View Graph for Relation Extraction (2012.06780v1)

Published 12 Dec 2020 in cs.CL

Abstract: Relation Extraction (RE) is to predict the relation type of two entities that are mentioned in a piece of text, e.g., a sentence or a dialogue. When the given text is long, it is challenging to identify indicative words for the relation prediction. Recent advances on RE task are from BERT-based sequence modeling and graph-based modeling of relationships among the tokens in the sequence. In this paper, we propose to construct a latent multi-view graph to capture various possible relationships among tokens. We then refine this graph to select important words for relation prediction. Finally, the representation of the refined graph and the BERT-based sequence representation are concatenated for relation extraction. Specifically, in our proposed GDPNet (Gaussian Dynamic Time Warping Pooling Net), we utilize Gaussian Graph Generator (GGG) to generate edges of the multi-view graph. The graph is then refined by Dynamic Time Warping Pooling (DTWPool). On DialogRE and TACRED, we show that GDPNet achieves the best performance on dialogue-level RE, and comparable performance with the state-of-the-arts on sentence-level RE.

Citations (81)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.