Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Outlier-robust sparse/low-rank least-squares regression and robust matrix completion (2012.06750v3)

Published 12 Dec 2020 in math.ST, stat.ML, and stat.TH

Abstract: We study high-dimensional least-squares regression within a subgaussian statistical learning framework with heterogeneous noise. It includes $s$-sparse and $r$-low-rank least-squares regression when a fraction $\epsilon$ of the labels are adversarially contaminated. We also present a novel theory of trace-regression with matrix decomposition based on a new application of the product process. For these problems, we show novel near-optimal "subgaussian" estimation rates of the form $r(n,d_{e})+\sqrt{\log(1/\delta)/n}+\epsilon\log(1/\epsilon)$, valid with probability at least $1-\delta$. Here, $r(n,d_{e})$ is the optimal uncontaminated rate as a function of the effective dimension $d_{e}$ but independent of the failure probability $\delta$. These rates are valid uniformly on $\delta$, i.e., the estimators' tuning do not depend on $\delta$. Lastly, we consider noisy robust matrix completion with non-uniform sampling. If only the low-rank matrix is of interest, we present a novel near-optimal rate that is independent of the corruption level $a$. Our estimators are tractable and based on a new "sorted" Huber-type loss. No information on $(s,r,\epsilon,a)$ are needed to tune these estimators. Our analysis makes use of novel $\delta$-optimal concentration inequalities for the multiplier and product processes which could be useful elsewhere. For instance, they imply novel sharp oracle inequalities for Lasso and Slope with optimal dependence on $\delta$. Numerical simulations confirm our theoretical predictions. In particular, "sorted" Huber regression can outperform classical Huber regression.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com