DeCoAR 2.0: Deep Contextualized Acoustic Representations with Vector Quantization (2012.06659v1)
Abstract: Recent success in speech representation learning enables a new way to leverage unlabeled data to train speech recognition model. In speech representation learning, a large amount of unlabeled data is used in a self-supervised manner to learn a feature representation. Then a smaller amount of labeled data is used to train a downstream ASR system using the new feature representations. Based on our previous work DeCoAR and inspirations from other speech representation learning, we propose DeCoAR 2.0, a Deep Contextualized Acoustic Representation with vector quantization. We introduce several modifications over the DeCoAR: first, we use Transformers in encoding module instead of LSTMs; second, we introduce a vector quantization layer between encoder and reconstruction modules; third, we propose an objective that combines the reconstructive loss with vector quantization diversity loss to train speech representations. Our experiments show consistent improvements over other speech representations in different data-sparse scenarios. Without fine-tuning, a light-weight ASR model trained on 10 hours of LibriSpeech labeled data with DeCoAR 2.0 features outperforms the model trained on the full 960-hour dataset with filterbank features.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.