Papers
Topics
Authors
Recent
2000 character limit reached

Limits of PageRank-based ranking methods in sports data (2012.06366v1)

Published 11 Dec 2020 in cs.SI, cs.IR, and physics.soc-ph

Abstract: While PageRank has been extensively used to rank sport tournament participants (teams or individuals), its superiority over simpler ranking methods has been never clearly demonstrated. We use sports results from 18 major leagues to calibrate a state-of-art model for synthetic sports results. Model data are then used to assess the ranking performance of PageRank in a controlled setting. We find that PageRank outperforms the benchmark ranking by the number of wins only when a small fraction of all games have been played. Increased randomness in the data, such as intrinsic randomness of outcomes or advantage of home teams, further reduces the range of PageRank's superiority. We propose a new PageRank variant which outperforms PageRank in all evaluated settings, yet shares its sensitivity to increased randomness in the data. Our main findings are confirmed by evaluating the ranking algorithms on real data. Our work demonstrates the danger of using novel metrics and algorithms without considering their limits of applicability.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube