Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Feature Selection Based on Sparse Neural Network Layer with Normalizing Constraints (2012.06365v2)

Published 11 Dec 2020 in cs.LG, cs.CV, and cs.NE

Abstract: Feature selection is important step in machine learning since it has shown to improve prediction accuracy while depressing the curse of dimensionality of high dimensional data. The neural networks have experienced tremendous success in solving many nonlinear learning problems. Here, we propose new neural-network based feature selection approach that introduces two constrains, the satisfying of which leads to sparse FS layer. We have performed extensive experiments on synthetic and real world data to evaluate performance of the proposed FS. In experiments we focus on the high dimension, low sample size data since those represent the main challenge for feature selection. The results confirm that proposed Feature Selection Based on Sparse Neural Network Layer with Normalizing Constraints (SNEL-FS) is able to select the important features and yields superior performance compared to other conventional FS methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.