Papers
Topics
Authors
Recent
2000 character limit reached

Learning from Survey Propagation: a Neural Network for MAX-E-$3$-SAT (2012.06344v2)

Published 10 Dec 2020 in cs.AI

Abstract: Many natural optimization problems are NP-hard, which implies that they are probably hard to solve exactly in the worst-case. However, it suffices to get reasonably good solutions for all (or even most) instances in practice. This paper presents a new algorithm for computing approximate solutions in ${\Theta(N})$ for the Maximum Exact 3-Satisfiability (MAX-E-$3$-SAT) problem by using deep learning methodology. This methodology allows us to create a learning algorithm able to fix Boolean variables by using local information obtained by the Survey Propagation algorithm. By performing an accurate analysis, on random CNF instances of the MAX-E-$3$-SAT with several Boolean variables, we show that this new algorithm, avoiding any decimation strategy, can build assignments better than a random one, even if the convergence of the messages is not found. Although this algorithm is not competitive with state-of-the-art Maximum Satisfiability (MAX-SAT) solvers, it can solve substantially larger and more complicated problems than it ever saw during training.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.