Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SoK: Diving into DAG-based Blockchain Systems (2012.06128v3)

Published 11 Dec 2020 in cs.CR, cs.DC, and cs.PF

Abstract: Blockchain plays an important role in cryptocurrency markets and technology services. However, limitations on high latency and low scalability retard their adoptions and applications in classic designs. Reconstructed blockchain systems have been proposed to avoid the consumption of competitive transactions caused by linear sequenced blocks. These systems, instead, structure transactions/blocks in the form of Directed Acyclic Graph (DAG) and consequently re-build upper layer components including consensus, incentives, \textit{etc.} The promise of DAG-based blockchain systems is to enable fast confirmation (complete transactions within million seconds) and high scalability (attach transactions in parallel) without significantly compromising security. However, this field still lacks systematic work that summarises the DAG technique. To bridge the gap, this Systematization of Knowledge (SoK) provides a comprehensive analysis of DAG-based blockchain systems. Through deconstructing open-sourced systems and reviewing academic researches, we conclude the main components and featured properties of systems, and provide the approach to establish a DAG. With this in hand, we analyze the security and performance of several leading systems, followed by discussions and comparisons with concurrent (scaling blockchain) techniques. We further identify open challenges to highlight the potentiality of DAG-based solutions and indicate their promising directions for future research.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube