Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

KNN Classification with One-step Computation (2012.06047v2)

Published 9 Dec 2020 in cs.LG and cs.AI

Abstract: KNN classification is an improvisational learning mode, in which they are carried out only when a test data is predicted that set a suitable K value and search the K nearest neighbors from the whole training sample space, referred them to the lazy part of KNN classification. This lazy part has been the bottleneck problem of applying KNN classification due to the complete search of K nearest neighbors. In this paper, a one-step computation is proposed to replace the lazy part of KNN classification. The one-step computation actually transforms the lazy part to a matrix computation as follows. Given a test data, training samples are first applied to fit the test data with the least squares loss function. And then, a relationship matrix is generated by weighting all training samples according to their influence on the test data. Finally, a group lasso is employed to perform sparse learning of the relationship matrix. In this way, setting K value and searching K nearest neighbors are both integrated to a unified computation. In addition, a new classification rule is proposed for improving the performance of one-step KNN classification. The proposed approach is experimentally evaluated, and demonstrated that the one-step KNN classification is efficient and promising

Citations (63)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)