Papers
Topics
Authors
Recent
2000 character limit reached

Learning to Resolve Conflicts for Multi-Agent Path Finding with Conflict-Based Search (2012.06005v1)

Published 10 Dec 2020 in cs.AI

Abstract: Conflict-Based Search (CBS) is a state-of-the-art algorithm for multi-agent path finding. At the high level, CBS repeatedly detects conflicts and resolves one of them by splitting the current problem into two subproblems. Previous work chooses the conflict to resolve by categorizing the conflict into three classes and always picking a conflict from the highest-priority class. In this work, we propose an oracle for conflict selection that results in smaller search tree sizes than the one used in previous work. However, the computation of the oracle is slow. Thus, we propose a machine-learning framework for conflict selection that observes the decisions made by the oracle and learns a conflict-selection strategy represented by a linear ranking function that imitates the oracle's decisions accurately and quickly. Experiments on benchmark maps indicate that our method significantly improves the success rates, the search tree sizes and runtimes over the current state-of-the-art CBS solver.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.