Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Four algorithms to solve symmetric multi-type non-negative matrix tri-factorization problem (2012.05963v1)

Published 10 Dec 2020 in cs.DS

Abstract: In this paper, we consider the symmetric multi-type non-negative matrix tri-factorization problem (SNMTF), which attempts to factorize several symmetric non-negative matrices simultaneously. This can be considered as a generalization of the classical non-negative matrix tri-factorization problem and includes a non-convex objective function which is a multivariate sixth degree polynomial and a has convex feasibility set. It has a special importance in data science, since it serves as a mathematical model for the fusion of different data sources in data clustering. We develop four methods to solve the SNMTF. They are based on four theoretical approaches known from the literature: the fixed point method (FPM), the block-coordinate descent with projected gradient (BCD), the gradient method with exact line search (GM-ELS) and the adaptive moment estimation method (ADAM). For each of these methods we offer a software implementation: for the former two methods we use Matlab and for the latter Python with the TensorFlow library. We test these methods on three data-sets: the synthetic data-set we generated, while the others represent real-life similarities between different objects. Extensive numerical results show that with sufficient computing time all four methods perform satisfactorily and ADAM most often yields the best mean square error ($\mathrm{MSE}$). However, if the computation time is limited, FPM gives the best $\mathrm{MSE}$ because it shows the fastest convergence at the beginning. All data-sets and codes are publicly available on our GitLab profile.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.