User Questions from Tweets on COVID-19: An Exploratory Study (2012.05836v1)
Abstract: Social media platforms, such as Twitter, provide a suitable avenue for users (people or patients) concerned on health questions to discuss and share information with each other. In December 2019, a few coronavirus disease cases were first reported in China. Soon after, the World Health Organization (WHO) declared a state of emergency due to the rapid spread of the virus in other parts of the world. In this work, we used automated extraction of COVID-19 discussion from Twitter and a NLP method based on topic modeling to discover the main questions related to COVID-19 from tweets. Moreover, we created a Named Entity Recognition (NER) model to identify the main entities of four different categories: disease, drug, person, and organization. Our findings can help policy makers and health care organizations to understand the issues of people on COVID-19 and it can be used to address them appropriately.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.