Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

User Questions from Tweets on COVID-19: An Exploratory Study (2012.05836v1)

Published 20 Nov 2020 in cs.SI

Abstract: Social media platforms, such as Twitter, provide a suitable avenue for users (people or patients) concerned on health questions to discuss and share information with each other. In December 2019, a few coronavirus disease cases were first reported in China. Soon after, the World Health Organization (WHO) declared a state of emergency due to the rapid spread of the virus in other parts of the world. In this work, we used automated extraction of COVID-19 discussion from Twitter and a NLP method based on topic modeling to discover the main questions related to COVID-19 from tweets. Moreover, we created a Named Entity Recognition (NER) model to identify the main entities of four different categories: disease, drug, person, and organization. Our findings can help policy makers and health care organizations to understand the issues of people on COVID-19 and it can be used to address them appropriately.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)