Papers
Topics
Authors
Recent
2000 character limit reached

Direct multimodal few-shot learning of speech and images (2012.05680v2)

Published 10 Dec 2020 in cs.CL, cs.SD, and eess.AS

Abstract: We propose direct multimodal few-shot models that learn a shared embedding space of spoken words and images from only a few paired examples. Imagine an agent is shown an image along with a spoken word describing the object in the picture, e.g. pen, book and eraser. After observing a few paired examples of each class, the model is asked to identify the "book" in a set of unseen pictures. Previous work used a two-step indirect approach relying on learned unimodal representations: speech-speech and image-image comparisons are performed across the support set of given speech-image pairs. We propose two direct models which instead learn a single multimodal space where inputs from different modalities are directly comparable: a multimodal triplet network (MTriplet) and a multimodal correspondence autoencoder (MCAE). To train these direct models, we mine speech-image pairs: the support set is used to pair up unlabelled in-domain speech and images. In a speech-to-image digit matching task, direct models outperform indirect models, with the MTriplet achieving the best multimodal five-shot accuracy. We show that the improvements are due to the combination of unsupervised and transfer learning in the direct models, and the absence of two-step compounding errors.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.